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Abstract

The physical–chemical processes involved in light-induced polymerization

(photopolymerization) are widely exploited in additive manufacturing

(AM) technologies such as Stereolithography and Digital Light Processing. The

influence of the AM process parameters on the physical properties of man-

ufactured components has been often investigated through empirical methods

based on the trial and error approach, that is, by collecting and interpreting a

large amount of experimental data. However, when desired physical properties

are required, accurate modeling of the liquid–solid conversion is necessary. In

this work, in order to determine the properties of the resulting material

according to the adopted process setup, we present a multi-physics approach

to model the physical–chemical transformation taking place in photo-

polymerization. The role played on the final mechanical properties by the laser

light intensity and by its moving speed is considered. Further, the influence of

the uncertainty of the process parameters is investigated through a sensitivity

analysis. The proposed approach is suitable for investigating the reliability of

additively manufactured components as well as for their design according to

an optimum printing strategy. From the perspective of making innovative

functional materials, the proposed multi-physics model allows tuning the

printing process in order to get the desired distribution of mechanical

properties.
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1 | INTRODUCTION

Photopolymerization—an efficient strategy to synthesize polymers—is a chemical–physical process which uses light to
trigger the solidification of a liquid resin. This process has been recently exploited in new conceptions of making objects
in the continuously developing field of additive manufacturing (AM). Among the available technologies based on the
light-induced solidification available to date, it is worth mentioning the Stereolithography (SLA) and the ones
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subsequently developed, such as the Digital Light Processing (DLP), the Projection Micro-Stereolithography, and the
Microstereolithograpy.1,2 All these technologies enable producing components to be used in a wide range of applica-
tions, such as in medicine, bio-engineering, soft-robotics, automotive, aerospace, and nanotechnology.

As a matter of fact, the photopolymerization process allows getting polymeric components characterized by intricate
geometries even with micro-size dimensions, a result almost impossible to be achieved with standard technologies.
Moreover, differently from standard technologies based on a subtractive manufacturing, it enables minimizing the
waste material.3

An open issue still existing for all the AM technologies is represented by the possibility to tune the mechanical fea-
tures of the printed material not only on the basis of the raw material used (consisting of a liquid monomer in the case
of photopolymerization) but also on the specific way the solidification process, driven by the AM process parameters, is
conducted.4 In fact, the same component can show very different properties according to the printing setup adopted to
fabricate it.1,2 The existence of these “degrees of freedom” in producing a photopolymerized material, introduces new
complexities that need to be fully controlled in order to fulfill the requirements related to the application in turn.

Traditionally, the influence of the printing setup on the mechanical behavior of AM materials has been investigated
by means of empirical approaches, mostly based on the collection of a large amount of experimental data,5–7 aimed at
correlating the final mechanical properties to the AM parameters used. Despite these approaches can help understand-
ing the relation between AM process parameters and achieved mechanical features, their use is limited to the specified
material studied and the obtained relations are often limited to specific conditions, thus do not have the required
generality.

In order to face this problem, understanding and modeling the chemical–physical phenomena in AM processes is
crucial for the use of the AM production in advanced applications requiring a precise control of the final materials'
properties. This approach, besides being useful in predicting the mechanical behavior of AM components, more intrigu-
ingly allows designing the printing process strategy according to the desired final properties and their distribution
within the component.

The paper is organized as follows: in Section 2 we present the multiphysics model for the photopolymerization
process, illustrating in Section 2.1 the kinetics model for the chemical species and mechanical properties evolution, in
Section 2.2 the model of the light (triggering the polymerization) diffusion in a continuum and in Section 2.3 the micro-
mechanical model used to describe the mechanical behavior of photopolymerized materials. Then, in Section 3—based
on the FEM modeling of the involved processes—we show and discuss the results related to the sensitivity analysis
conducted, useful to understand the relationship between the photopolymerization features and the mechanics. Finally,
Section 4 closes the paper with some concluding remarks and future perspectives.

2 | MULTIPHYSICS MODEL OF PHOTOPOLYMERIZATION

Photopolymerization is a chemical–physical process requiring a multidisciplinary approach. The process takes place
according to the following phenomena: (1) the light propagation process in the medium being solidified, (2) the kinetics
of the chemical species, and (3) the evolution of the mechanical properties. The light intensity distribution within the
domain (induced by the moving laser source, typically used in Stereolithography and in other AM technologies based
on the same principle) represents the stimulus responsible for the polymerization process to occur, consisting in initia-
tion, propagation and termination of polymer chains, see Figure 1.

2.1 | Kinetics of the chemical species modeling and mechanical properties evolution

The light-induced polymerization of a liquid monomer resin (photoplymerization) can be chemically described by a set
of chemical reactions (see Figure 1) describing the evolution of the chemical species involved, namely, (1) the monomer
molecules (M), (2) the photo-initiators molecules (PhI), and (3) the free radicals (R), whose concentrations in the initial
reference configuration at a generic time are CMðX , t), CIðX , tÞ and CRðX , tÞ, respectively. The evolution of these species
is responsible for the initiation, propagation and termination of polymer chains in the continuum and consequently for
the solidification process (also known as curing): the light irradiation induces the conversion (and therefore the con-
sumption) of PhI into R; the last ones, reacting with M, induce the activation of functional groups P that grow within
the material by reacting with other monomers M and forming the polymer chains. The chains grow within the medium
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until another chain or a free radical is encountered (end of propagation, Pend). The above-illustrated phenomena are
described by a set of partial differential equations8–10:

_CI X , tð Þ¼�kprI X , tð ÞCI X , tð Þ ð1Þ

_CR X , tð Þ¼�m _CI X , tð Þ�mkt CR X , tð Þ½ �2 ð2Þ

_CM X , tð Þ¼�kpCM X , tð ÞCR X , tð Þ ð3Þ

together with the related initial conditions: CIðX , t¼ 0Þ¼CI0, CRðX , t¼ 0Þ¼CR0 and CMðX , t¼ 0Þ¼CM0: In
Equations 1–3, the superposed dot indicates the time derivative of the variable in turn while kpr, kp, and kt are the
photodecomposition, the propagation and the termination rate constants (hereafter assumed do be independent by
the curing evolution), respectively; finally, m is the number of radicals generated by the decomposition of each
photo-initiator. The solution of this system of differential equations requires the knowledge of the light intensity I at
each point of the domain (see Section 2.2). Finally, the so-called degree of cure (ϱ), a fundamental quantity
quantifying the degree of polymer chains development in the material, can be obtained. This parameter affects the
polymer chains concentration (crosslinked chains) ca, thus representing an internal variable related to the stiffness
of the material; it can be simply evaluated as ϱðX , tÞ¼ 1�CMðX , tÞ=CM0ðXÞ .8,11,12 The polymer chain concentration
can be finally evaluated as follows:

ca X , tð Þ¼H ϱ X , tð Þð Þ � �μ

kBT
exp w � ϱðX , tÞ�1½ �f g ð4Þ

where H is the Heaviside function defined as H¼ 0 for ϱðX , tÞ< ϱgel or H¼ 1 for ϱðX , tÞ≥ ϱgel. ϱgel represents the degree
of conversion of the material at the gelation point, w is a model parameter regulating the rate of the material stiffness
increase after the gelation point, while �μ is the shear modulus of the fully-cured polymer (i.e., the maximum shear mod-
ulus achievable with the specific resin being printed).

2.2 | Model of the light diffusion in a continuum

When the boundary of the domain is irradiated by a laser source, the field of the light intensity inside the material can
be determined; starting from the lighted surface, its intensity decreases going down in the domain because of the chem-
ical properties of the material (material influence) and because of the distance from the laser source (geometrical

FIGURE 1 Schematic view of photopolymerization: liquid resin doped with photo-initiator molecules at the initial stage before light

irradiation (A) and polymer chains evolution due to light spread within the domain (B); the chemical reactions of the photopolymerization

process are also reported
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influence). The reduction of the light intensity within a semi-transparent continuum, whose domain is here denoted
with Ω, with respect to the light intensity irradiated on the boundary ∂Ω, depends on the so-called material absorbance
A(X,t), being X�Ω the position vector of a point within the domain and t the time.

The light irradiating the boundary of a semi-transparent continuum induces an instantaneous light intensity field
within the continuum; this field can be evaluated by solving the well-known Beer–Lambert law,13 whose expression in
a 3D domain is: lðX , tÞ �rX IðX , tÞ¼�AðX , tÞIðX , tÞ for X �Ω , where 5 is the gradient operator while l is the versor
defining the orientation of the incoming laser beam; the Dirichlet boundary condition, namely I X , tð Þ¼�I X , tð Þ¼
Im �exp� X�vtð Þ

c for X �Ω0 (where Im is the peak intensity of the laser light, v is the laser speed and c is a parameter regu-
lating the width of the light irradiated zone) are required to solve the problem, see Figure 1B.

It is worth mentioning that the Beer–Lambert law in 1D problems with a constant material's absorbance can be
solved analytically; in a general 2D or 3D setting, even if the absorbance is assumed to be constant, the closed-form
solution of the Beer–Lambert equation becomes almost impossible because of the generic shape of the domain and/or
of the boundary conditions. However, the use of standard computational techniques, such as the finite element
(FE) one, allows efficiently solving the multi-physics problem even for a generic problem's domain with the related
boundary conditions.

In our approach we have reformulated the light diffusion problem by using a weak form, suitable to be readily
implemented in a FE framework. After discretizing the domain with FE, the above equations are expressed by the fol-
lowing system of algebraic equations:

E tð ÞþA tð ÞþD½ �I tð Þ¼Q tð Þ ð5Þ

where Q is the vector of the FE nodal values of the incoming light intensity (assigned on the top boundary of the
domain), I is the vector of the unknown light intensities to be evaluated (i.e., the vector containing the light intensities
at each node of the discretized domain), while the matrices E , A and D represent the light gradient matrix, the deple-
tion matrix and the stabilization matrix of the overall discretized problem, respectively. The above matrices can be
evaluated by assembling the corresponding matrices related to each FE, that is, Ee tð Þ¼ Ð

Ve
B½ �T�l tð Þ N½ �dV , Ae tð Þ¼

�Ð
Ve

N½ �TA X , tð Þ N½ �dV and De tð Þ¼Qhe
Ð
Ve

B½ �T B½ �dV , being [N] and [B] the standard shape functions and compatibil-
ity matrix, respectively, while Q>1 and he represent a coefficient and a characteristic size of the FE, respectively. It is
worth mentioning that the material absorbance used to define the depletion matrix is related to the physical–chemical
evolution of the material being solidified. It is usually expressed as AðX , tÞ¼ θCIðX , tÞþApolϱðX , tÞþAmonð1Þ�ϱðX , tÞÞ,
where θ is the photo-initiator molar absorbance while Apol and Amon are the absorbance of the polymer and of the
monomer molecules, respectively.8

In our model, we consider that the photopolymerization process does not induce any temperature increase of the
material, since all the energy provided by the light source is assumed to be used for inducing the polymerization reac-
tions and does not heat the material. Moreover, the conversion of photoinitiators into free radicals and the reaction of
the latter with monomer units activating the functional groups responsible for the chain to grow, is assumed to be an
isothermal process. This hypothesis allows neglecting the thermal problem in the photopolymerization phenomenon; it
is worth mentioning that the temperature increase during the photopolymerization could affect the kinetics rate con-
stants (see Equations 1–3) and in turn the rate of monomer conversion. It has been shown14 that if the thermal diffu-
sion takes place faster than the rate of polymerization, the system evolves as if it were isothermal; on the other hand,
when thermal diffusion is slower, an accumulation of heat behind the polymerization front takes place, resulting in an
increase of the degree of conversion corresponding to an acceleration of the growth of the solid.

2.3 | Mechanics of polymer's network

The molecular structure of a polymer suggests describing its mechanical behavior on the basis of the entropic energy,
usually adopted to characterize disordered systems. Within this framework, a well-established approach is commonly
used: the state of a polymer chain (whose conformation is often described by the so-called freely jointed chain model,
FJC) is assumed to depend only on its end-to-end vector r identified by the extremities of the chain itself. In the refer-
ence configuration Ω0 and in the corresponding deformed one Ω such a vector is identified by r0 and r¼Fr0 , respec-
tively, where F represents the deformation gradient tensor.15 The above expression for r is based on the so-called affine
deformation hypothesis, usually adopted in the mechanics of polymers, that allows us to identify the microscopic
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deformation with the macroscopic one.16 The mechanical energy stored in a single chain ψ is usually assumed to
depend on the end-to-end vector; the force existing in the chain is thus given by the following derivative16:

f ¼ ∂ψ

∂r
ð6Þ

We assume the time t of the mechanical problem to be measured from the end of the polymerization process, that is, t≥
tc. By considering a single point of a polymeric material, once the distribution of the end-to-end vectors is known at
that point its state is completely defined; to this end, let us introduce the distribution function of the end-to-end vectors
ρ(r) providing the number of chains, whose end-to-end vector falls within the sphere centered at r and with radius drj j,
per unit volume of material.17 From a mechanical perspective, such a function accounts only for the mechanically
active chains, that is, those connected at both ends to the network; the amount of active chains per unit volume, or
chain concentration, is hereafter indicated with ca, so the following equality holds:

ca tð Þ¼ ⟨ρ r, tð Þ⟩¼
ð
Ω

ρ r, tð ÞdΩ ð7Þ

where the integral is evaluated over the chain configuration space.18 The energy per unit volume is given by

Ψ tð Þ¼ ⟨ρ r, tð Þψ⟩ ð8Þ

The derivative of the energy function Equation 8 with respect to the deformation gradient allows determining the nomi-
nal stress tensor:

P tð Þ¼ ∂ΔΨ tð Þ
∂F

þp tð ÞJF�T ð9Þ

P , p being the first Piola stress tensor and the hydrostatic pressure enforcing the isochoric deformation, respectively,
while J= detF is the volumetric deformation.19 Correspondingly, the Cauchy stress is given by

σ tð Þ¼ J�1 ∂Ψ
∂t

∂t
∂F

� �
FT ¼

ð
Ω

ρ r, tð Þ�ρ0 rð Þ½ �f tð Þ
O

rdΩþp tð Þ1 ð10Þ

where it is J= 1 because of the assumed isochoric deformation. From the above discussion, it appears that the stress
state of the network is known once the current distribution function ρ(r,t) and the corresponding one in the stress-free
reference state ρ0 are known. In a deformed material, the current ρ(r,t) can be obtained starting from ρðr, t¼ 0Þ¼ ρ0ðrÞ
as ρ r, tð Þ¼ ρ0 rð Þþ Ð t

0 _ρ r,τð Þdτ; the time rate _ρ r, tð Þ required in the previous integral is given by18:

_ρ tð Þ¼� ρ,i rjLijþρLii
� � ð11Þ

where L is the velocity gradient tensor, L¼ _FF�1.
The mechanical behavior of a polymer network is thus conveniently describable by the above illustrated approach;

in a photopolymerized polymer the chain density ca is evaluated by solving the kinetic Equations 1–4 and by adopting
the standard Gaussian distribution for ρ0(r).

18

The present multi-physics approach has been implemented in ad-hoc in house FE code where the governing
equations (and the related boundary conditions) of the light diffusion, chemical kinetics and mechanics have been
coded in nonlinear solution algorithms.

3 | SENSITIVITY ANALYSIS

A sensitivity analysis is aimed at assessing the variation of the response of an engineering system because of small varia-
tions of the input quantities, and is typically employed to quantify the effect of the uncertainty of the input data. In this
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work, the sensitivity analysis is performed to quantify how the uncertainties of the speed and light peak intensity of the
laser beam influence the mechanical properties of the final printed component.

The engineering system here considered is represented by a rectangular domain of liquid monomer resin undergo-
ing photopolymerization; the process leads to a simple structural element, namely a single-printed layer beam with
rectangular cross-section.

We simulate the curing process of a liquid monomer resin contained in a 2D vat having depth s= 10 mm and width
w= 30 mm (single-layer). The initial properties of the system used in Equations 1–3 are assumed to be CM0= 3000 mol/
m3, CI0= 20 mol/m3, CR0= 0 mol/m3. The chemical rate constants are assumed as follows: kpr= 8 � 10�4 s2/kg, kp= kt=
0.21 m3 � s �mol�1. The shear modulus of the fully-cured polymer is assumed to be �μ¼ 267 MPa while we adopt w¼ 3.
The sensitivity analysis has been performed by simulating several curing processes by assuming both a constant mate-
rial absorbance AðX , tÞ¼AL ¼ 600m�1 (representative of the liquid resin), and a variable absorbance evolving during
the curing process as shown in Section 2.2, by assuming θ¼ 30m2=mol, Apol ¼ 2400m�1 and Amon ¼ 0m�1 . In the case
of a variable absorbance evolving during the curing process, when the material attains the solid state all the available
photo-intiators are consumed, i.e. CIðX , tÞ! 0, and we get AðX , tÞ¼AS ¼ 2400m�1 . After simulating the printing pro-
cess, the mechanical response of a printed cantilever beam under a transversal load is considered.

The sensitivity analysis outlines the role played by the input uncertainties on the mechanical properties of the
printed material (see Section 2.1) and on its mechanical response evaluated by using the micromechanical model of
Section 2.3.

The dimensionless shear modulus plotted along a vertical section placed in the middle of the printed beam is dis-
played in Figure 2: in order to quantify the effect of uncertainties of the laser intensity, the reference laser velocity has
been assumed equal to v= 1 mm/s, while the reference maximum laser intensity of Im= 100 W/m2 has been varied by

FIGURE 2 Dimensionless shear modulus along a vertical line placed in the middle of beam element, whose photopolymerization

process has been simulated by (i) varying the light intensity while keeping a constant laser speed of v= 1 mm/s (A, B), and (ii) varying the

laser speed for a fixed laser light intensity of Im= 100 W/m2 (C, D), by assuming a constant (A, C) and a variable (B, D) material absorbance,

being AS= 2400 mm�1. Dimensionless depth η= d/s
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(±5% , ± 10% , ± 50%); a constant and a variable material absorbance has been adopted, Figure 2A,B. Similarly, in
Figure 2C,D the effect of the uncertainties of the laser speed (variations of ±5% , ± 10% , ± 50% with respect to the refer-
ence value v= 1 mm/s have been adopted), for a fixed maximum laser light intensity Im= 100 W/m2 is displayed. In all
the investigated cases, small variations of the input quantities (±5% and ±10%) do not provide noticeable effects on the
mechanical quality of the material, quantified through its dimensionless shear modulus. On the other hand, greater var-
iations of the input quantities (±50%) provide a more evident changes of the mechanical property of the material. More-
over, as can be noticed from Figure 2, the final material seems to be more sensitive to input variations when a constant
material absorbance is assumed, see Figures 2A,B and 2C,D.

Figure 3 displays the load–displacement curves of the beam element considering the same input variations
described above; a slight variation of the photopolymerization parameters (±5% and ±10%) is responsible for a limited
change of the load–displacement response, while greater variations (±50%) induces a more severe variation of its
response. Interestingly, the variation of the maximum light intensity provides load–displacement curves close to the
original one, either assuming a constant or a variable material absorbance, Figure 3A,B. On the other hand, the varia-
tion of the laser speed strongly affects the load–displacement curves, see Figure 3C,D. According to the above-discussed
results, the investigated photopolymerized structural element results to be more sensitive to the variation of the laser
speed rather than to that of the maximum light intensity.

Moreover, it can be noticed that the stiffness of the structural element (as well as its deformed shape at a certain
load level, see Figure 3C, points P1 and P2 and the corresponding deformed shapes plotted in the same figure) can be
tuned by properly setting the printing parameters. From a functional material perspective, starting from a given raw
material, this offers the possibility to tailor the mechanical behavior of the printed element by acting on the values of
the printing parameter.

In Figure 4 the dimensionless displacement attained for a load level of P= 20 N (normalized with respect to the
beam made of the fully cured material, that is, the one cured for an infinite time) for a fixed laser speed and by varying
the maximum light intensity (Figure 4A) or by fixing the maximum light intensity and varying the laser speed
(Figure 4B), is shown for both a constant and a variable material absorbance. As already mentioned, the response of

FIGURE 3 Load–displacement curves of the beam element obtained according to the corresponding photopolymerization parameters

reported in Figure 2
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the system is more sensible to the laser speed variations. On the other hand, irrespectively of the input parameters, by
considering the printing process to be characterized by the lowest value of the absorbance (that of the liquid monomer,
black curves in Figure 4A,B) the model overestimates the stiffness of the element compared with the case of a variable
absorbance (red curves in Figure 4A,B). The simulation of the photopolymerization process by adopting a
variable absorbance results to be more realistic, since the shielding effect produced by the solidified part of the resin in
limiting the penetration of light in the material, so hindering its curing, is accounted for.

4 | CONCLUSIONS

A multi-physics model of the photopolymerization used in AM has been illustrated. The governing equations of the
polymerization process induced by light and those related to the mechanics of the polymer network have been illus-
trated. The developed approach, implemented in a FE framework, has been used to study the sensitivity of the mechan-
ical properties and of the corresponding mechanical response of the photopolymerized material to the uncertainty of
the printing parameters. The numerical analyses revealed that the properties of the final material are slightly affected
by the variation of the laser speed and the maximum laser light intensity when their variations are limited (±5% and
±10%). On the other hand, variations of the order of about ≥50% are responsible for a significant variation of the mate-
rial's properties and of its mechanical response. Further, the effect of the material absorbance has been considered: by
assuming the photopolymerization taking place at a constant value of the absorbance (that of the initial liquid mono-
mer) overestimates the stiffness of the material, while if the evolution of the absorbance during the curing process is
accounted for, more realistic results are obtained. The proposed multi-physics approach is readily extendable to the sim-
ulation of the photopolymerization taking place in multiple superposed layers as occurs in real AM printing; the forth-
coming development of the proposed approach will consider such an aspect by accounting for the effective aborbance
of the already solidified layers when solving the light diffusion problem.

The developed approach allows investigating and optimizing the printing strategy of additively manufactured com-
ponents. Moreover, the possibility to precisely design the mechanical properties distribution, opens new paths in the
optimal material design aimed at tuning the structural components' behavior, enabling the production of elements with
tailored and programmable responses.
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FIGURE 4 Effect of the variation of the maximum laser light intensity for a fixed laser speed (A) and of the laser speed variation for a

fixed maximum light intensity (B). The dimensionless displacement of the top right point of the beam (normalized with respect to the

corresponding one of the fully cured beam) at the load level P= 20N is reported for constant and variable absorbance
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